If it's not what You are looking for type in the equation solver your own equation and let us solve it.
15^2+x^2=26^2
We move all terms to the left:
15^2+x^2-(26^2)=0
We add all the numbers together, and all the variables
x^2-451=0
a = 1; b = 0; c = -451;
Δ = b2-4ac
Δ = 02-4·1·(-451)
Δ = 1804
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{1804}=\sqrt{4*451}=\sqrt{4}*\sqrt{451}=2\sqrt{451}$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(0)-2\sqrt{451}}{2*1}=\frac{0-2\sqrt{451}}{2} =-\frac{2\sqrt{451}}{2} =-\sqrt{451} $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(0)+2\sqrt{451}}{2*1}=\frac{0+2\sqrt{451}}{2} =\frac{2\sqrt{451}}{2} =\sqrt{451} $
| 2(2w+2)=6 | | 3x-15+5x+2x+5=180 | | -12-4x=-4(3+x) | | 3/4(2x-1)=5 | | -2x-x=3 | | 5(-2x+8)=8x+32 | | 5=4j+5 | | X-1+x+6=17 | | 4b+11=b-7 | | 5^2+x^2=8^2 | | x-7=19+2x | | 3(2f+2)=6 | | 72^2+65^2=x^2 | | -1-3(3b+7)=-85 | | 2x-14+x=16 | | 208q-11)=-12 | | 8^2+b^2=17^2 | | 1/6n=93 | | 4(8v+1)=164 | | 6x+8x3-4=38 | | x+14=5x-2x+14=5x+2= | | 5-2x-3=3x+2 | | -8+3n=-17 | | (4c-8)=(5c-19) | | 4a+2B+3C=12 | | 5(x-11)-4=11-5 | | 14=5+3u | | -6(3s-4)+19(s-4)=-52-6 | | (7x-2)=(4x) | | 19=w/2-12 | | -10.3=2.2+w/5 | | 0.25-5/4=0.5a-1/3a |